Does Haplodiploidy Purge Inbreeding Depression in Rotifer Populations?
نویسندگان
چکیده
BACKGROUND Inbreeding depression is an important evolutionary factor, particularly when new habitats are colonized by few individuals. Then, inbreeding depression by drift could favour the establishment of later immigrants because their hybrid offspring would enjoy higher fitness. Rotifers are the only major zooplanktonic group where information on inbreeding depression is still critically scarce, despite the fact that in cyclical parthenogenetic rotifers males are haploid and could purge deleterious recessive alleles, thereby decreasing inbreeding depression. METHODOLOGY/PRINCIPAL FINDINGS We studied the effects of inbreeding in two populations of the cyclical parthenogenetic rotifer Brachionus plicatilis. For each population, we compared both the parental fertilization proportion and F1 fitness components from intraclonal (selfed) and interclonal (outcrossed) crosses. The parental fertilization proportion was similar for both types of crosses, suggesting that there is no mechanism to avoid selfing. In the F1 generation of both populations, we found evidence of inbreeding depression for the fitness components associated with asexual reproduction; whereas inbreeding depression was only found for one of the two sexual reproduction fitness components measured. CONCLUSIONS/SIGNIFICANCE Our results show that rotifers, like other major zooplanktonic groups, can be affected by inbreeding depression in different stages of their life cycle. These results suggest that haplodiploidy does not purge efficiently deleterious recessive alleles. The inbreeding depression detected here has important implications when a rotifer population is founded and intraclonal crossing is likely to occur. Thus, during the foundation of new populations inbreeding depression may provide opportunities for new immigrants, increasing gene flow between populations, and affecting genetic differentiation.
منابع مشابه
Inbreeding Depression Is Purged in the Invasive Insect Harmonia axyridis
Bottlenecks in population size reduce genetic diversity and increase inbreeding, which can lead to inbreeding depression. It is thus puzzling how introduced species, which typically pass through bottlenecks, become such successful invaders. However, under certain theoretical conditions, bottlenecks of intermediate size can actually purge the alleles that cause inbreeding depression. Although th...
متن کاملA new theory for the evolution of polyandry as a means of inbreeding avoidance.
We propose a novel theory for the evolution of polyandry driven by genetic benefits to females whose offspring interbreed. In species with an ecology characterized by frequent colonization of new habitat patches, consanguineous matings may be common during the early stages of colonization, but genetic diversity may grow as new colonizers arrive. We show that with levels of inbreeding depression...
متن کاملUnderstanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation, and standard selection.
The joint consequences of inbreeding, natural selection, and deleterious mutation on mean fitness after population shrinkage are of great importance in evolution and can be critical to the conservation of endangered populations. I present simple analytical equations that predict these consequences, improving and extending a previous heuristic treatment. Purge is defined as the "extra" selection...
متن کاملInformation to Users
Title of Dissertation: GENETIC MANAGEMENT, INBREEDING DEPRESSION AND OUTBREEDING DEPRESSION IN CAPTIVE POPULATIONS Jonathan D. Ballou, Doctor of Philosophy, 1995 Dissertation directed by: Dr. Gerald S. Wilkinson Associate Professor Department of Zoology The patterns and severity of inbreeding and outbreeding depression in organisms have been used to address fundamental questions relat ing to b...
متن کاملJoint effects of self-fertilization and population structure on mutation load, inbreeding depression and heterosis.
Both the spatial distribution of organisms and their mode of reproduction have important effects on the change in allele frequencies within populations. In this article, we study the combined effect of population structure and the rate of partial selfing of organisms on the efficiency of selection against recurrent deleterious mutations. Assuming an island model of population structure and weak...
متن کامل